
OFFICIAL DOCUMENTATION

The

ORBIT
Programming language

Getting Started

1

Regarding Nations, computers with NightRealm OS (Build Jasmine or
above) come with both a compiler and an integrated development
environment preinstalled on them.

Regarding Java Development, an official library allowing you to run
your own orbit code is currently in the works, so stay tuned!

Regarding Visual Studio Code, an official extension is planned, but
any information regarding it still has to be announced.

Orbit is a custom programming inspired by languages such as Lua &
JavaScript. It was created in early 2022, and its backend is written in Java.

It is used on the NightRealm Minecraft Server, on the Nations
gamemode.

https://www.nightrealm.ga/

Comments

 // The line below prints a message
 print("Hello, World!")

2

Ironically, the first thing we are going to do is tell the computer to ignore
a part of the written code. Text written in a program that isn't run by the
computer is called a comment.
Comments in orbit are marked by at the start of the line.

Comments can be used in many ways such as helping other people to
understand the code better or ignoring a line of code to see how the
program would work without it.

//

Output
The function can be used to output text on the screen or,
respectively, to the player.

print()

 print("Orbit is awesome!")

 Orbit is awesome!

It also has one additional use. When used on NightRealm, you can also
specify to what players to send the output text to.

 print("your text goes here.", aPlayer, anotherPlayer)

Variables

3

int - Represents integers / whole numbers.

float - Represents floating point numbers.

bool - Has only two possible states: true and false.

string - Represents written text.

Variables are containers used for storing data and values.
The types of variables existent in orbit are:

int

bool

float

string

Creating Variables
To create a variable, also known as declaring a variable, you must specify
a name, a type, and, optionally, a value:

 type variableName = value

Operators

+ - Addition. Adds together two values.

- - Subtraction. Subtracts one value from another.

* - Multiplication. Multiplies two values.

/ - Division. Divides one value by another.

% - Modulus. Returns the division remainder.

++ - Increment. Increases the value of a variable by 1.

-- - Decrement. Decreases the value of a variable by 1.

Operators are used to perform operations on variables and values.

Arithmetic Operators:
As the name suggests, arithmetic operators are used to perform
mathematical operations.

4

= - X = Y

+= - X += Y | Same as X = X + Y

-= - X -= Y | Same as X = X - Y

*= - x *= Y | Same as X = X * Y

/= - X /= Y | Same as X = X / Y

%= - X %= Y | Same as X = X % Y

Assignment Operators:
assignment operators are used when assigning values to variables.

== - Equal to

!= - Not equal

> - Greater than

< - Less than

>= - Greater than or equal to

<= - Less than or equal to

Comparison Operators:
Comparison operators are used to compare values.

&& - AND. Returns true if both statements are true.

|| - OR. Returns true if any statement is true.

! - NOT. Negates the statement (From true to false, respectively from

false to true)

Logical Operators:
Logical operators are used to perform logical operations.

Lists

5

Lists are used to store multiple values in a single variable, instead of
needing to declare a variable for each individual value.

To declare a list, you must specify a name and a type:

 list<type> listName

When declaring it, you can also insert values into it, separated by
commas, inside square brackets:

 list<type> listName = [var1, var2, var3]

Accessing Elements
You can access the elements of a list by referring to the index.

Note: List indexes start at 0. The first element is [0], the second is [1], the
third is [2] and so on...

 print(listName[0])

Changing Elements
To change an element of a list, you must again, refer to its index.

 listName[0] = var

Note: Lists are dynamic, meaning that if an element does not exist, it will
be created.

List Length
You can find out how many elements a list has using the List#size()
function.

List#size()

 list<int> numbers = [1,2,3,4,5]
 print(numbers.size())

The Player Type

6

player::getPlayer(string name)

list<player>::getPlayersInRange(float range)

int::getX(player p)

int::getY(player p)

int::getZ(player p)

Note: The following section applies only for Nations.

The type is a special variable type that can hold information
about any player that is currently online.

This type does not do much on it's own, but there are a few functions in
the STD library which use it:

These are all return-type functions, meaning that their result get
assigned to a variable.

player

player::getPlayer(string name)

list<player>::getPlayersInRange(float range)

int::getX(player p)

int::getY(player p)

int::getZ(player p)

If... Else
The statement is used to execute a block of code only if a certain
condition is true. The condition is specified after the keyword, and the
code is placed between the keyword and the keyword.
If the condition is not met, the code in the block is executed.

if
if

then end
else

 if condition then
 // the code to execute
 end

 if condition then
 // the code to execute
 else
 // code if condition is false
 end

While Loop

7

The loop is a control flow statement that allows a block of code to
be executed until a given condition has been satisfied. The loop
can be thought of as a repeating statement.

while

 while condition do
 // the code to execute
 end

while
if

For Loop
The loop is a control flow statement for specifying iteration.
Specifically, a loop functions by running a section of code repeatedly
until a certain condition has been satisfied.

for
for

 for assignment; condition; increment do
 // the code to execute
 end

The is used to initialize a loop variable. This can be any valid
orbit expression.

The is a statement that is executed at the end of each
iteration.

assignment

increment

Break Statement
The keyword is used to exit out of a loop early, before the loop
condition is no longer true. It is often used in conjunction with an
 statement to provide a way to exit the loop based on some condition.

break
if

 for i = 1; i <= 10; i++ do
 if i == 5 then
 break
 end

 print(i)
 end

https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Iteration

Declaring Functions

8

 function functionName() does
 // the code to execute
 fend

In Orbit, you can create your own functions to reuse code and make your
program more organized. To declare a function, you can use the
following syntax:

Calling Functions
To call a function, you can use the function name followed by
parentheses:

 functionName()

Return Statement
The keyword works very similarly to the keyword. It is
used to exit out of a function at any point. If the program isn't currently in
a function, the keyword will instead stop the execution of the
program.

return break

return

Returning Values
Currently, custom functions cannot return values. However, some of the
built-in functions can return values and these are called return-type
functions. Here are some examples on how they are properly used:

 string input
 input::getInput()

 player andrej
 andrej::getPlayer("AndrejFish_")

The Standard Library

9

The Standard (Also known as STD) Library contains the base and the
most important variables and methods used in the whole language.

STD Methods
print(string message)

print(string message, player... players)

broadcast(string message)

broadcast(string message, float radius)

sleep(float ticks)

sound(string sound, float pitch)

string::getInput()

 - Prints a message to the screen.

 - Prints a message to the given players.

 - Broadcasts a message to all players in a 45 block radius.

 - Broadcasts a message to all players in a given radius.
 - Radius has to be smaller or equal to the default 45.

 - Pauses the execution of the code for a given amount of ticks.
 - (1 Second = 20 Ticks).

 - Plays a sound, with the given pitch.
 - Here is a list of the sounds you can play.

 - Opens an input box, and assigns the value of the given text to the
variable.

print(string message)

print(string message, player... players)

broadcast(string message)

broadcast(string message, float radius)

sleep(float ticks)

sound(string sound, float pitch)

string::getInput()

STD Variables
playerHealth - The health of the player running the script.

playerFood - The hunger of the player running the script.

nationsBalance - The balance of the player running the script.

phoneNumber - The phone number of the player running the script.

playerHealth

playerFood

nationsBalance

phoneNumber

https://hub.spigotmc.org/javadocs/bukkit/org/bukkit/Sound.html

The Utility Library

10

The Utility Library contains multiple "sub libraries". One of them is
Random, allowing you to generate random integers. The other being
"Unsafe", giving you access to unsafe functions such as eval.

Utility Methods

Random:

 - Generates a random value to the rand variable.

Unsafe:

 - Allows you to dynamically run a line of code.

 - Allows the program to jump to a specific line in the code and
continue execution from there.

setRand(int min, int max)

eval(string code)

goto(int index)

Utility Variables
rand - Used by the setRand() function.rand

The GUI Library

GUI Methods

 - Opens a GUI with a given title.

 - Forcefully closes the GUI (if any is open).

 - Changes a slot’s graphics, based only on data.

 - Changes a slot’s graphics, based on both data and a hex color.
 - It is important to note to not put the # at the start of the color.

 - Changes the whole screen to a given data value.

 - Changes the whole screen to a given data and hex color value.

 - Clears the whole GUI, removing any data value.

Note: The usable slots of the GUI are 0-53. Any other values given will be
ignored. Usable data goes from 1-74 and is represented by:

11

The Graphical User Interface (Also known as GUI) Library contains the
required tools to display a custom Screen to the player.

openGui(string title)

closeGui()

poke(int slot, int data)

poke(int slot, int data, string color)

fill(int data)

fill(int data, string color)

clear()

NOTE: There are 2 additional icons which did not fit on the table.

